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PROBABILISTIC MODELING OF COMMON CHANNEL SIGNALING

by

D. P. Gaver and P. A. Jacobs
Naval Postgraduate School

J. P. Lehoczky
Carnegi-Mellon University

Abstract and Summary

This report details preliminary models for a common-channel signaling

system that sets up and tears down voice calls in a circuit-switched network.

The initial Sections 1-3 present alternative detailed models for a single

signaling link between circuit-switched nodes. Section 4 outlines a heuristic

procedure for calculating delays in a signaling network; it makes use of an

M/G/1 queueing approximation partially justified earlier. The simple

illustrative problem addressed in Section 4 suggests approaches to a realistic

network.
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1. INTRODUCTION

Common channel signaling is an out-of-band signaling method in which

several data and/or voice channels use a common data channel to transmit

signaling information; [cf. Skoog [1990]]. The demand for the signaling

channel is generated by activity on the data and/or voice channels. For voice

channels, examples of signals are call-setup messages and call-tear-down

messages.

In this paper we introduce several different probability models for

common channel signaling on the link between two connected nodes

(switches). All the models represent the common signaling channel as a single

server; cf. CCITT Study Group XI [1984]. A customer arriving at the server

requires several types of services, somewhat spaced out in time. There is an

initial service, such as a voice call setup, which must be completed before the

customer can use the voice/data network. After completion of this initial

service, however, the customer does not require further service from the

common channel server (CCS) for a period perhaps approximately equal to

the call length, but, after such a random time the customer will require another

type of service from the CCS. Both service requests impose load on the CCS,

thus increasing delays.

Assumptions

In this preliminary discussion we will assume that each arriving customer

requires two types of service: an initial call setup service which requires a

time X; and, after a period of time, a call tear-down service which requires a

time Y. These services are assumed to be independent with fixed

distributions. It is interesting to inquire as to wlicthcr the distribution of X ?t
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least should depend upon the current network state, i.e. the difficulty of call

setup.

In Section 2, a model is studied for the work at one common channel

signaling server. The model allows the distributions of X and Y to be

arbitrary. Equations for the moment generating function of the amount of

work are given. A simple approximation is proposed for the long run

average amount of work at the server. Simulation is used to study the effect

of simplifying assumptions in the model and the approximation. In Section 3,

two simple queueing network models for one common channel signaling

server are described; the models have a product form limiting distribution.

In Section 4 a simple example is given to illustrate how the approximation of

Section 2 for one common channel server may be used to study a common

channel signaling network. Appendix B briefly examines the possibility of

using a specific voice/data network model, the CSNDAM, to generate loads

for a common channel signaling network model.

2. A MODEL FOR THE AMOUNT OF WORK AT THE COMMON
CHANNEL SERVER

There are two service centers. One service center is a single server queue

representing the common channel server. The service discipline is first-come-

first-served. The second service center consists of K servers and represents

calls in progress.

Customers arrive according to a Poisson process with rate ,L. The nth call

to arrive requires two service times from the CCS, X, and Y. Assume {Xnj

and (Y,,} are independent sequences of independent identically distributed

random variables. The distribution of Xn will, in general, be different from
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that for Yn. The nth call also requires a service time C, from the second service

center. Assume {C,} are independent identically distributed exponential with

mean 1/u.

To simplify the state space'of the initial model, we make the following

assumptions: if a custonter arrives when all K servers in the second service

center are busy, the customer is lost. If a customer arrives when there is at

least one free server at service center 2, then it immediately queues at the CCS

for an X-service. It also simultaneously starts a C-service at service center 2.

This assumption is made for convenience: a C-service is actually a call, which

cannot begin until the setup is complete, i.e. when the call completes its X-

service. However, dutiful modeling at this level of detail complicates the

state space (at least one must keep track of the numbers of each type of job in

the queue and make an assumption concerning the type-setup or tear

down-receiving service). In our model, after a customer finishes a C-service,

it queues up at the CCS for a Y-service. When its Y-service is completed the

call is finished. In this initial model it is conceptually and actually possible

for a call to be completed (finish its C-service) before its setup (X-service) has

been finished. The effect is minor when E[X] o 1/v, as is the case in practice.

Adjustment to the model can be made to compensate for this effect but as

previously noted dimension of the model state space is expanded.

Let Wt be the total amount of work at the CCS at time t. Let Nt be the

number of busy servers at service center 2. Note that INt; t > 0} is the number

of customers in a M/M/K/K queue and its long-run marginal distribution is

given by
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ir(n) = limP{Nt =n} = r(O){ -- n = 0,,...,K (2)

with Jr(O n ] ; that is, it is truncated Poisson.

a. A System of Equations for the Laplace Transform of the Amount of Work

at the CCS

Let

Qn(O;t) = E[eOwt ;Nt = n].

Forward differential equations can be written for {Qk(O;t)}. For example,

Q0 (O;t + h) = E[e " OWt h;Nt+h = 01

= {E[exp{- O[Wt h]};Nt = 0,Wt > hi + P{Wt < h,Nt = 0}}[1 - ;Lhj

+E[exp{- (Y +Wt - h));Nt = 1juh +o(h)

= A(t;h)[1 - )i] + Y(O)Q(O;t)uh +o(h) (2.2)

where

A(t;h) = eOhE[e Wt;Nt =0,Wt >hi + P{Wt < h;Nt =0}

and Y(O) = Efe a Y ] is the Laplace transform of a Y-service time. Let

Fo(x;t) = P{Wt< x; Nt= 0).

A(t;h) = eehlle -Ox FO (dx; t) + Fo(h; t)

=e, (O;t) - ehf e-xF(dx;t)+ Fo(dx;t)

= eoQ 0(o; t) - eh (;t) +f + e FO(dx;t)I+PO(O;t) +f+FO(dx;t)
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= eOhQo(O;t) . po(O;t)1 - e O fh+ (1-eO(h - X))Fo( dx ; t)

= (1 + Oh)Q 0 (O;h) - Ohpo(O;t) +o(h) (2.3)

where p,(Ot) = P{Wt = 0, N t = n}.

Thus, rewriting (2.2)

Q0 (O;t + h) = [1 - A.hI{(1 + Oh)Q 0 (O;t) - Ohpo(O;t)}

+vhY(O)Q 1 (O;t) + o(h). (2.4)

Simplifying

Qo (0; t + 1z) = [1 -(A - O)h]Q 0 (0;t) - Ohpo (0; t) + vii'( O) Q,( 0; t) + o(h). (2.5)

Subtracting Qo(O;t) from both sides of the last equation, dividing by h1 and

letting h--0 results in the equation
a- Q 0( Ot) = -(A. - 0)Q0 (0;t) + vu(O)Q1(O;t) - Op0 (o;t). (2.6)

at

Similar arguments result in the following system of equations.

For 1 < n < K

aQn(0;t) (A + n - 0)Qn(0; t) + (n + 1)vY(O)Q 2+1 (0;t) (2.7)

+A)L(O)Q n .-(0;t) - @,,(0; t);

1 QK(O;t) = - 0)QK(0;t)+ XX(O)QK .(0;t) - 0PK ;t) (2.8)
at

where

pn(O;t) = P{Wt = 0,Nt = n}

as before and

9(0) l Ee ri mX1,

the Laplace transform of an X-service time.
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Assume Qn(0) = limQn(0;t) exists. The system of equations satisfied by

{Qn(O)} are

O0p(0) = -(A - 0)Qo(0) + vY(O)Ql(O); (2.9)

for 0 < n <K,

Opn(O) = ;,X(O)Qn. 1(0) - (A + nu - O)Qn(O) + (n + 1) v(O)Qn+l(e); (2.10)

and 0PK (0) = A.X(O)QK .1(0) - (Ku- O)QK(O) (211)

where p,1(0) = limP{Wt = 0,Nt = n}.

Let p(O) be a column vector whose nth entry is p,,(O). Let Q (0) be a column

vector whose nth entry is Q,(0). let D(0) be a square matrix with (K + 1) rows

with nonzero entries possible only on the lower diagonal, diagonal, and

upper diagonal and with ij entries D(i, j; 0) as follows:

D(k,k 1;0) = AX(0) 1 < k _ K +1 (212)

D(k,k;0) 0-A -(k -1)v I < k K (2.13)

D(1,1;0) = 0 - A (214)

D(K + 1,K + 1;0) =0 -Kv (2.15)

D(k,k + 1;0) = k vu(O) 1< k K. (216)

The system of equations (2.9)-(2.11) can be rewritten as

Op(O) = D(0)Q(0). (2.17)

For an example of D(O) for K = 2, see Appendix A.

Let Nn(O) be the matrix D(O) with the nth column replaced by the vector

0p(0). From Cramer's rule,
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QZ(O) = det(N'n(O)) (2.18)
det(D(6))

Since the columns of D(0) sum to zero, det (D(0)) = 0. Hence, a Taylor

expansion of D(e) about 0 = 0 yields

0 0 k dk
detD (0) Y" k'-d-detD(O) - Od(O). (2.19)

k-1

Further det Nn(O) = Obn(O) where bn(O) is the determinant of the matrix B,,(O)

whose entries are the same as D(O) except that its nth column is /(0). Thus

Qn( } =  ) ). (2.20)
d(O)

b. A Stability Condition

A stability condition for the queue can be obtained from the equation

K 1 K+1
1 = E Q0,0) = d( b,,(O). (2.21)

n=0 n-l

In Appendix A it will be shown that

K+1 O) 1 K  K ( K ,
(0 ) y K{ (O) v (2.22)

and

d(O) =( 1)K -.1(E[X{ [ )i!(K 'iv i] - K)PAK 'iv

*vE[Y (K - i) (2.23)
k/-O.

Hence,
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K K1
XPk(O) = i(K)LK'iu] [ d(0)]. (2.24)
k-0 -

K

Since 0 < k 0 Pk(O) < 1, it follows that

SKK -1

0< K E)AE[X]x i!E. v + vE[YJ Y (K i) A i! ) (225)
i-O I-1 i-O

Rewriting (2.25), a stability condition is

K K K-I
E (K)i! A 'v E[XI (K)i!'K ' vJ+ vE[YI (K - i)()i!LK I - . (2.26)

1-0 i=1 i=0

Note that when the stability condition is satisfied, d(0) > 0 for K even and

d(O) < 0 for K odd.

c. A Numerical Procedure to Evaluate Long-run Average Work at the

Common Channel Server

The Laplace transform of the limiting amount of work at the CCS is

K 1 K+1 b(O)

E~e '°w =LE Q(o) d(O) bn(O) Y- (2.27)
n=0 n=1

We conjecture that if the stability condition (2.26) is satisfied, then d(0) has

K positive distinct roots, 0 < 01 < 02 < ... < OK. At each of these roots the

equation

0 = b(O) i = 1,...,K (2.28)

is an equation involving {p, (0); n = 0, 1, ..., K). These equations in addition to

the equation

1 = b() (2.29)
d(O)
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yield (K+1) independent equations from which the lp,(O)) can be obtained.

To obtain an expression for E[W] differentiate (2.27) with respect to 0 and

evaluate at 0 = 0 which results in

E[WJ [b'o)d(o) - b()d'(O) (2.30)
d(0)'

The derivatives of the determinants of the matrices are computed as

described in Appendix A.

A summary of the numerical procedure to compute E[W] follows.

1. Check that the stability condition (2.26) is satisfied. If it is not satisfied
stop. If it is satisfied continue.

2. Use a search procedure to find the K positive roots of d(O).

3. Solve the system of equations (2.28)-(2.29) to find {p1,,(0);n = 0, ..., K).

4. Exaluate (2.30) to find E[W].

d. An Approx ination for E[W]

In this subsection a simple approximation to the model of this section is

described.

The limiting distribution of the M/M/K/K queue is of the form

=7r()] n =0, 1.K.

We approximate the arrival process to the CCS from the M/M/K/K queue by

a Poisson process with having rate

K
va = V I nr(n). (2.31)

n1o
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We further approximate the arrival process of outside customers to the CCS

by a Poisson process having rate

Xa = [l - ir(K)J. (2.32)

The total arrival process of customers to the CCS is approximated by a

Poisson process having rate .t = va + Xa.

The approximate model of the CCS is an M/G/1 queue with arrival rate

Xt and with the service time distribution being the following mixture of the

distributions of X and Y:

P{S - t} = "-P{X t- + Igaply t}. (2.33)x t ,Lt

The approximation to E[W] is found using the Pollaczek-Khintchine formula

W a tE[S21 '(.4Wa = 2(1 - XtE[SI) (2.34)

The approximate probability that the CCS is idle is

Pa(idle) = 1 - AtE[SI = 1 - IaE[X] - vaE[Y]. (2.35)

e. A Comparison of Numerical Results

A simulation was constructed for the following model of one server in the

common channel system. The common channel signaling system is again

modeled as a single server with finite waiting room and first-come-first-

served service discipline. There is an M/M/K/K queue to model the calls in

progress. There is a maximum number of calls allowed in the entire system.

Outside arrivals occur according to a Poisson process with rate A. An outside

arrival is lost if all K servers are busy or there is the maximum number of calls

in the entire system. An outside arrival that is not blocked (possibly) queues

11



for an X-service by the CCS. After its X-service is completed it moves to the

M/M/K/K queue for a C-service. If all K services are busy the customer (call)

is lost. After completion of a C-service, the customer queies at the CCS for an

Y-service. When a customer's Y-service is completed, the customer leaves the

system.

The simulation generates random numbers using LLRANDOM II

[cf. Lewis et al. [1981]]. The average work in queue at the time of arrival of a

nonblocked outside customer is computed. The fraction of time the CCS is

idle is also computed.

Table I presents values for E[W] obtained from the simulation, the model

expression (2.30), and the approximate model expression (2.34). All the

service times have exponential distributions. The outside arrival rate I = 1.

The C-service times have mean 1/v with v = 0.7. Further, for all cases

E[X] = E[Y]. For the simulation, the maximum number of customers in the

entire system is 1000. The simulation ran for 5000 outside customer arrivals

(some of which were blocked). The probability of the CCS being idle is also

recorded in Table I for the simulation, the model, and the model

approximation.

TABLE I

Average Amount of Work at CCS P(Idle CCS)

K QX]=EIYI Model Approximation Simulation Model Approximation Simulation

2 1/2 1.22 1.19 1.31 0.30 0.30 0.29

3 1/2 4.01 3.55 2.38 0.12 0.12 0.15

4 1/2 14.67 11.33 9.13 0.04 0.04 0.04

2 1/3 0.30 0.29 0.40 0.53 0.53 0.53

3 1/3 0.50 0.47 0.51 0.42 0.42 0.43

4 1/3 0.68 0.59 0.63 0.36 0.36 0.35

5 1/3 0.80 0.64 0.67 0.34 0.34 0.32
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All three models give about the same probability of CCS idleness. The

values of E[W] are also very similar for all three models. Further numerical

experimentation is needed to study the differences among the three models.

3. QUEUEING NETWORK MODELS WITH PRODUCT FORM

LIMITING DISTRIBUTION

In this section we describe two simple queueing network models for one

server in the signaling network in the spirit of Baskett, et al. [19751. Queueing

network models, while appealing, are often difficult to analyze unless their

limiting distribution is of product form. We describe two such models

below.

There are two customer types: type 1 is a call setup service and type 2 is a

call tear-down service. Outside customers arrive as type 1 customers to the

single server CCS.

When a type 1 customer completes service at the CCS, he instantaneously

goes to service center 2. Service center 2 is an infinite server queue and

represents the calls in progress on the voice/data network; note that we

impose no finite limit, K, as was done in the earlier model. The service times

at service center 2 are independently and identically distributed. When a

customer completes service at service center 2, he becomes a type 2 customer

and returns to the CCS. After the customer completes his type 2 service, the

customer leaves the system.

In the remainder of this section, we describe two queueing network

models whose limiting distributions are of product form. The reader may

consult Baskett et al. [19751 to obtain ideas for model generalizations and gain
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some insight into the nature of the modeling restrictions imposed by

requiring a product form limiting distribution.

a. Open Network-FCFS Service at the CCS

In this model outside customers arrive according to a Poisson process

with rate X. Type i services at the CCS are independently and identically

distributed exponential with mean 1/u; that is, both call setup and call tear-

down distributions must have the same mean in this model, which is a

restriction. Service times at the infinite-server queue are independent

identically distributed exponential with mean 1/v.

Let Xt(z) be the number of customers of type i waiting or being served at

the CCS at time t and let Nt be the number of customers at Service Center 2

(SC2). It is well known, cf. Baskett et al. [1975], that if 2A < ji

7r(nl,n 2 ,m) = limP{Xt(1) = nl,Xt(2) = n2 ,Nt = n}
t -. 00

2A ](n , n e' A '/ IPM! (3.1)

for nj, n2, ni nonnegative integers.

If the mean service times for type 1 and type 2 customers are not the same,

then the limiting distribution will not necessarily be of a product form.

In this model, standard calculations yield that the long run average wait

in queue of an arriving type 1 customer to the CCS is

(1/yi) limE[Xt(1) + Xt(2) ] = (1/y)((2A //p) /(1 - 2A /p)) which is the same as the
t-00

long run average waiting time in queue for an arriving type 2 customer.

14



To allow for different service time distributions for type 1 and type 2

customers and still have a limiting distribution which is of product form, the

service discipline at the CCS must be something like processor-sharing; [cf.

Baskett et al. [1975]] which we describe in the next subsection.

b. An Open Queueing Network with Processor Sharing Service

The assumptions for this model are the same as before. However type i

services are independent identically distributed exponential with mean 1/i.

A customer's type 1 and type 2 services are independent of each other.

Further, the service discipline at the CCS is processor-sharing. Using the

same notation as above, if p = A + < 1, then

Yr(nj,n 2 ,C)111+ { 11 Af2  1~ m!-(Alt,) (3.2)

where C =[l-p] and nl, n2 and m are nonnegative integers; cf. Baskett et al.

[1975].

In this model standard calculations show that the long-run average wait in

the CCS queue of an arriving type 1 customer is

lira E[Xt(1)] + 1E[Xt(2)] A[-0 + A W1.(3)
t 00 T, ) 1-P1- 22 33

Further the total time spend waiting in queue in the entire system for an

arriving type 1 customer is

P --2 W6 . (3.4)
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Hence, the waiting time in queue at the CCS for an arriving customer of type

2 is

2 T 1 .1 2).
lW.W Q1.pI 2 (35)

Closed queueing network models similar to models a and b above may

be described in a similar manner.
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4. A MODEL FOR A COMMON CHANNEL SIGNALLING NETWORK

In this section we describe an example to illustrate an initial model for a

common channel signalling network (CCSN). This network is in service to a

circuit switching network. The example forms the groundwork for a full-

scale model associated with a real network.

The CCSN has several characteristics which will be reflected in its model.

1) Demand for the CCSN is generated by the voice network being

served. In our example we will assume that the voice network has already

been modeled, and quantities such as the trunk blocking probabilities and

arrival rates of calls requiring each trunk can be obtained.

2) The network is large and heavily used by many different sources. As

a result the dependence between servers is a secondary effect; (cf. Kelly [1986])

Thus, the signaling load generated by each trunk s modeled as independent

from trunk to trunk.

a. An Example of a Signaling Network Model

For purposes of illustration we will consider a network containing three

nodes: labeled 1, 2, 3 and connected as shown below.

Figure 1

We will consider calls for three source-destination pairs.
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Source Destination External Call Arrival
Rate for Source
Destination Pair

1 2 a 12

2 3 a 23

1 3 a 13

The routing for calls between source destination pairs is as follows: The calls

for source-destination (s,d) pair (1,2) can only use the trunk connecting 1 and

2, denoted [1,2]. The calls for (s,d) pair (2,3) can only use the trunk connecting

2 and 3, i.e. [2,3]. The calls for (s,d) pair (1,3) have a preferred route using the

trunk connecting 1 and 3, [1,31. If the trunk [1,3] is blocked, the call will

attempt to use an alternate route which consists of [1,2] and [2,3].

We will make the following assumptions concerning the CCSN.

(a) There is a signaling link for each trunk. The time required for a
signaling operation is a random variable independent of the circuit
switching congestion. In principle, this may be questionable, and is
subject to change.

(b) The common channel signaling network for each node can be modeled
as independent single servers.

(c) Each attempt for a call setup on a trunk between iand j (whether
successful or not) generates a call setup service for the signaling servers
at nodes i andj.

(d) When a call between a source-destination pair is completed, a call tear-
down service is required by the signaling server at each node along its
route.

The signaling server at each node will be modeled using the M/G/1

queueing model of (2.31)-(2.34). This model will require the effective arrival

rate of call setup attempts (whether or not successful) and the arrival rate of

carried calls. It also requires a service time characterization; this is

presumably the time for a packet to pass from the originating node to the next

signaling node.

18



Let Bijbe the probability that voice trunk [ij] is blocked. The arrival

rates of call setup attempts is approximately computed as follows; cf. Kelly

[1989].

Trunk Effective Arrival Rate of Call Setup Attempts

[1,2] e12 = af12 + a13 B 13

[2,3] e23 = a 2 3 + aC13 B 13[1-B 121

[1,3] e13 = aX13

To explain e12, note that the effective arrival rate of call setups on trunk [1,2] is

the direct call rate a12, plus the calls that attempt to go from 1 to 3 but are

blocked, and hence rerouted on [1,2]. Likewise, e23 is the sum of the rate of

outside calls attempting to access 3 from 2, plus the calls originating from 1

and intended for 3 that are blocked on [1,3] but not blocked on [1,2]. All other

effective arrival rates are 0. The arrival rate of carried calls to trunk [i,j] is

computed as follows

Trunk Arrival Rate of Carried Calls

[1,2] C12 = e12 [1-B 121

[2,3] C23 = e23 [1-B 2 3]

[1,3] C13 = e13 [1-B 13]

All other effective arrival rates are 0.

The model for work at the signaling server at node i is an M/G/1 queue

with arrival rate

4 Y (e1 +c,) + Y (ek, + cki) (4.1)
j k

where the summations are over all nodes j and k. The service time

distribution is a mixture of distributions
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e, q+ eki Cij ECki

Pj k P{ t I k P{Y <_.t} (4.2)

where X is the length of a call setup service and Y is the length of a call tear-

down service. If Wi is the average delay at the signaling server at node i, then,

by familiar M/G/1 formulas, see Kleinrock [1975],

S= 2(1 - jE[SI) ifEIE[SI 1. (4.3)

The expected delay on the signaling network for attempts to set up a

call between a source-destination pair can now be computed. In what follows

we will assume that a call setup attempt using trunk [ij] requires a service at

the signaling server both nodes i and j with possible queueing at each node;

the X-service at node i must be completed before the service at node j begins.

This assumption can be modified for specific signaling network protocols.

For example, a call from source 1 to destination 3 has an initial call setup

service at nodes 1 and 3; if trunk [1,3] is blocked another call setup service is

required at nodes 1 and 2; if trunk [1,2] is not blocked, then an additional call

setup service is required at nodes 2 and 3. Hence the expected delay on the

signaling network for an attempt to set up a call from source 1 to destination 3

is

E[D 131 = W, + E[XJ +W3 + E[XJ +B13 [Wl + E[Xj +W2 + E[XI + [1- B12][W 2 + W3 + 2E[ Xi]1

= Fil + 3 +2E[XI+ B13 [Wtl + W2 + 2E[XI+ [1-B 121[W 2 + W'3 +2E[ X]] (4.4)

The time to tear-down a call between 1 and 3 can also be computed. In

what follows we will assume that a call tear-down using trunk [ij] requires a

20



Y-service at both node iand node j. For example a call from source 1 to

destination 3 has a call tear-down service at nodes 1 and 3 with the conditional

probability that the carried call used link [1,3]; this conditional probability is

R - B131{1 - B13J +B1311 - B12111 - B23 1}1  PI (4.5)

It has a tear-down service at nodes 1, 2, and 3 with the conditional probability

that the call uses both trunks [1,2] and [1,3]; this conditional probability is

{B13 11 B12 1[1 - B231}{[1 - B131+ B1311 - B12111 -B2311' - P2- (4.6)

Hence the expected delay tearing down a call on the signaling network is

PAIWI + W3 + 2E[YI] + P2[W + + 3 + 3E[YJJ = W + + p2(W2 + E[YJ) + 2E[YI.
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5. CONCLUSION

In this paper we have considered several possible approaches to

modeling a single server in a common channel signaling network. The

modeling assumptions required by queueing network models with product

form solutions appear restrictive. An M/G/1 approximation to a more

detailed model of work at a common channel server appears to be adequate

for practical purposes. An approach to modeling a network of common

channel servers is suggested.
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APPENDIX A

In this section we will describe the arguments leading to the expressions
K I

for E K 1 bn(O) and d(O) in Section 3. For simplicity, we will illustrate them for

the case K = 2.

If K =2, then

o0- ; )Y(O) 1
D(0) = [, (0) (0 -(2. + v)) 2Y(O) ; (A.1)

2.x(0) (8 - 2v)

[PO0) 1) 0v
I( O ) -(A + v) 2v (A.2)

-P2 (0) 2 -2v-

-A Po(O) 0

B2(0) k pl(0) 2v • (A.3)

0 P2(0) -2v_

B3(0)= "L -(.;+v) p1 (0). (A. 4)

0 P2(0)i

Adding the first row of B i(O) to the second row and then adding the resulting

second row to the third row results in the matrices

O PO(0) v 0(
0'

-PO(0) +P1() +P2(0) 0 0
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[d P( 0)0
2°(0)- 0 PO0(0) + P1(0) 2v (A. 6)

PO(0) + PI(0) + P2(0) 0

BO(0) - po( 0 ) +pl(0) (A.7)
0 0 p0(0) + P1 (0) + P2 (0)

Sicede B(O 02 is an upper

Since det Bi(O) =detB°(0) and the minor of the entry j.oPis()

diagonal matrix, it follows that

3F 2
bn() 1P(0]) 2 +2)Lv + 2t21. (A.8)

Iz -1

To find an expression for d(O), note that

d(O) = d detD(0)
dO 1

0--0
= detD1 (0)(A9

where Di(e) is the matrix D(O) with the same entries as D(O) except that the ith

row contains the derivatives of the functions of the ith row of D(O); cf. Apostle

[1969].

In the case of K = 2

1- vE[Y] 01
DO) =A -( + v) 2v (A.10)

-0 A -2v
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A 01
D()[ .A;IXI -+v) 2 (A. 11)

D3D(0 i ( ) 2j + l {) 2v1A.1]

(A 1 vet[ 21> V+E[Ylde A21)1

= 1(2v 2) + tUE(Y)f -2AuvJ (A.13)

detD2(O) =E[IXJ de{v- ]+ 1 det[-A 0  V] +2vEYI det[ - ]o

= -LE[I][2v 2 j1+ k(2v -2tE[YI k2  (A. 14)

=AE[Xj de{- L ]+l1det[.A _U]

= IEXl[-2,kvl+; 2  (A.15)

Thus
3

d(0) = £dtDi(O)

=,k 2 + 2uA +2 2V2 - AE[XI[2Aut + 2 v21 - uE[YI[2Au + 2;L2 (A. 16)
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APPENDIX B. THE DEFENSE COMMUNICATIONS AGENCY CIRCUIT

SWITCHED NETWORK DESIGN/ANALYSIS MODEL (CSNDAM)

The Defense Communications Agency is currently using a computer

model called the CSNDAM (Circuit Switched Network Design/Analysis

Model) "to design and maintain optimal cost-effective circuit switched

networks"; cf. Defense Communications Agency [1989].

The CSNDAM can be used to model traffic on a voice network. This

model for a voice network could then be used to generate demand in a model

for the common channel signaling network as outlined in Section 4. In this

appendix we discuss two issues concerning using the CSNDAM to model the

voice network which generates demand on a common channel signaling

network.

The first issue is minor. The CSNDAM model output is in terms of load

measured in Erlangs. Thus, to obtain arrival rates, the loads must be divided
1

by the expected call holding time. For example, if 1 is the expected call
U

holding time and a ii is the CSNDAM computed offered load (in Erlangs) on

trunk [i,j], then a iv is part of the call setup arrival rate for nodes i and j.

The second issue is more important. In its computation of offered load,

CSNDAM subtracts load on a link due to calls that unsuccessfully attempt to

use that link for part of their path from source to destination. However, a

signal is generated on the common channel signaling network even if a call set

up attempt is unsuccessful. Hence, the arrival rate of call set up signals for

node i not only involves the offered load for all traffic passing through node i
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but also the load through node i generated by calls that unsuccessfully

attempt to use a path through node i. Thus, it appears that in order to use the

CSNDAM model to generate demand for the common channel signaling

network, the CSNDAM model would have to be modified to calculate the

load on the signaling network due to lost calls.
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